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Abstract: Mobile robots have an unlimited workspace, unlike conventional fixed to the robot. Therefore, they are 

frequently studied from past to present. In this study, it is aimed to model wheeled a mobile robot(WMR) and 

realize optimal trajectory tracking control. Mathematical model of the robot was obtained. The Linear Quadratic 

Regulator (LQR) method, one of the optimum control methods for controlling the robot has been proposed. The Q 

and R parameters affecting the performance of the proposed control method were obtained by using the Firefly 

optimization algorithm. Both process noise and measurement noise have been added to control the robot in 

conditions close to the actual ambient conditions. As a result, in order to demonstrate the validity of the obtained 

model and the proposed control method, the robot was performed control in the simulation environment. The 

obtained results were given graphically and the results were examined. 
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1. INTRODUCTION 

Mobile robots have a wide range of application thanks to having an unlimited work 

area. Mobile robots can be used in many fields such as industry, space, military and social 

needs (vacuum cleaners and lawnmowers, etc.), which make people's lives easier, for 

entertainment and other purposes. In the control of mobile robots, the focus is generally on 

two main targets. These are a stable posture stabilization and trajectory tracking controller. 

The purpose of posture stabilization is to immobilize the robot to a reference point, the 

purpose of trajectory tracking is to allow the robot to follow a reference trajectory. In the 

study conducted in 1983, Brockett stated an opinion regarding whether nonholonomic mobile 

robot systems could be controlled through a smooth state feedback control (Brockett, 1983).  
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Hamel et al. proposed a control method resistant to localization errors of mobile robots 

(Hamel and Dominique, 1996). In another method proposed in the literature, a technical 

tracking controller with recoil recursion was used (Jiang and Nijmeijer, 1999; Fu et al., 2013). 

Xin et al. designed a disturbance observer and an adaptive stabilizer in order to cope with the 

uncertainties of wheeled mobile robots (Xin et al., 2016). Canale et al. handled the problem of 

the rapid implementation of a nonlinear predictive control model with function approach 

techniques (Canale et al., 2010). Bessas et al. proposed the integral sliding mode control 

method in order to solve the problem of accessing the sliding surface used in the sliding mode 

control method, and to enable an effective trajectory tracking control (Bessas et al., 2016). 

Wu and Karkoub proposed the method of hierarchical fuzzy sliding mode adaptive control for 

trajectory tracking of differentially driven mobile robots (Wu and Karkoub, 2019). In the 

literature, various studies on mobile robots have been conducted and continue to be conducted 

by researchers (Yang and Kim, 1999; Kara et al., 1999; Wu et al., 2019, Tian and Sarkar, 

2014; Li et al., 2015, Atan, 2019). In this study, it was aimed to model a wheeled mobile 

robot (WMR) and to perform optimum tracking control.  The mathematical model of the robot 

was obtained. The Linear Quadratic Regulator (LQR) method, which is one of the optimum 

control methods, was proposed to control the robot. Both process noise and measurement 

noise were added to control the robot under the conditions close to real environment 

conditions. As a result, to demonstrate the validity of the obtained model and the proposed 

control method, the control of the robot was performed in the simulation environment.  The 

results obtained were graphically given and examined. A second-order low-pass filter was 

designed to improve control performance of the robot under the conditions close to real 

environment conditions. The control methods applied according to the results of the obtained 

simulation environment were compared and the results were examined.  The two-dimensional 

general representation of the wheeled mobile robot (WMR) is shown in Figure 1. 

 

Figure 1. Two-dimensional representation of the wheeled mobile robot (WMR) 
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2. SYSTEM PREVIEW AND MODELING 

In the literature, mobile robots are studied depending on different wheel designs and 

types. The robot used in this study consists of two independent wheels on the right and left. 

Generally, the motion of the system is performed by controlling the angular velocities of the 

dc motors connected to these wheels.  Changing the orientations by moving on a curved 

trajectory or turning around by adjusting the angular velocities of two driving wheels is only 

one of the abilities of WMRs. To apply high-performance controllers in the control of a robot, 

the robot must be modeled. On a mobile robot with a differential drive, it is possible to apply 

the kinematic control approach provided that suitable conditions without sliding are selected. 

The kinematic model used for a two-wheeled mobile robot in Figure 1 is based on the 

assumption that the wheels move without sliding. Accordingly, the velocity references given 

to the actuators on the wheels enable the robot to move at linear and angular velocities 

corresponding to these references. In Figure 1, the robot coordinate framework was accepted 

as the center of mass of WMR located on the point C and used as the origin of XR and YR. The 

robot used in this study has two control variables; these are the angular velocities of the right 

and left wheels. In Figure 1, the linear velocity of the left wheel is shown with VL and linear 

velocity of the right wheel is shown with VR. Similarly, the angular velocities of the left and 

right wheels are ωL and ωR, respectively. R is the radius of the wheel, 2L is the distance 

between the wheels and 2L is the distance between the endpoint of the robot and point C 

which is the geometric center of the robot. The orientation angle of the mobile robot 

according to the XW-YW coordinate axis is θ. The following equations were obtained for 

linear and angular velocities 

 

𝑉 =
𝑉𝑅+𝑉𝐿

2
                                                                                                             (1) 

𝑉 = 𝜔 ∗ 𝑅                                                                                                             (2) 

𝑉𝑅 = 𝜔𝑅 ∗ 𝑅, 𝑉𝐿 = 𝜔𝐿 ∗ 𝑅                                                                                    (3) 

𝜔𝑅 =
𝑉𝑅

𝑅−𝐿
                                                                                                               (4) 

𝜔𝐿 =
𝑉𝐿

𝑅+𝐿
                                                                                                                (5) 

State equations of the mobile robot according to the XW-YW coordinate axis were expressed 

as follows.  
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�̇�

] = [
𝑐𝑜𝑠𝜃 0
sin 𝜃 0

0 1
] [

𝑣
𝜔

]                                                                                        (6) 

In this study, the method of Lagrange multipliers was used to obtain the mathematical model 

of WMR (Bertsekas,1999). 

𝑀(𝑞𝑚)�̈�𝑚 + C(𝑞𝑚 , �̇�𝑚)�̇�𝑚 + 𝐺𝑚(𝑞𝑚) + 𝜏𝑑 = 𝐵𝑚(𝑞𝑚)𝜏 − 𝐴𝑇(𝑞𝑚)Λ                  (7) 

 

 𝑞𝑚(𝑥, 𝑦, 𝜃)  indicates the position and orientation angle in X and Y directions, 

respectively. 𝑀(𝑞𝑚) ∈ 𝑅3∗3 is a positive definite symmetric matrix and shows inertia matrix ; 

𝐶(𝑞𝑚) ∈ 𝑅3∗3  shows Coriolis and centrifugal forces matrix;  𝐺(𝑞𝑚) ∈ 𝑅3∗3
  indicates the 

forces of gravity. In addition, 𝐵(𝑞𝑚), 𝐴(𝑞𝑚), 𝜏 𝑣𝑒 Λ  shows the input matrix, kinematic 

constraint matrix, input vector and Lagrange multiplier. Table I is shown physical parameter 

of WMR. 

 

3. CONTROLLER DESIGN 

The main objective for designing the control system of the mobile robot is stability 

and low tracking error. In the control of WMR, Linear Quadratic Regulator (LQR) control 

method was used. The aim of the control methods used is to ensure that the output value of 

the system tracks the targeted (reference) value. Error is tried to be minimized with the 

controller applied to the system.  

 

Table 1. Physical Parameter of WMR 

Description and symbol Units and value 

Mass of car (m) 1 (kg) 

Wheels Distance (L) 0.28 m  

Radius of Wheels (R) 0.143 m  

Inertia (I) 0.15 g-m2  

 

 3.1. LQR (Linear Quadratic Regulator) Control Method 

LQR control method is a modern control method that is used to control a system. This 

control method is widely used in the literature in optimal control problems (Anderson 2007; 

Abut,2016). The purpose of the control here is to minimize the integral of the quadratic 

performance index. In Figure 2, a block diagram of the linear quadratic regulator (LQR) 

control method is shown. 
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𝑢 = −𝐾 ∗ 𝑥                                                                                                            (8) 

𝐽 =
1

2
∫ (𝑥𝑇(𝑡)𝑄𝑥 + 𝑢𝑇𝑅𝑢)

∞

0
𝑑𝑡                                                                             (9) 

The equation 9 is a function as given. Selecting the parameters of this function in a 

way to make the function minimum or maximum optimizes the control system. The value of 

the function indicates to what extent the actual performance of the system corresponds with 

the desired performance. In other words, performance index is a measure showing the 

deviation from the ideal performance.  This index can be the integral of an error function that 

needs to be minimized. Optimum performance is nearly achieved through the minimization of 

the error integral. The main control problem in engineering is to determine the optimal control 

law that minimizes the performance index given under various safety and economic 

limitations. In the classical linear optimal control, the control vector u (t) is selected in a way 

that the performance index becomes the minimum. The performance index selected in the 

system control is generally quadratic according to both x (t) and u (t). The total expression 

where the matrices Q and R are located is desired to be minimum. This means the 

minimization of the equation 11. Here, the matrices Q and R are called weight matrices, and 

Q is a positive matrix in [2Nx2N] dimension while R is a positive matrix in [mxm] 

dimension.  Q is a positive semi-definite symmetric matrix and R is a positive definite number 

( 0,Q R  0). The optimal feedback gain matrix K is calculated with the following equation: 

𝐾 = 𝑇−1(𝑇−1)−1𝐵𝑇 = 𝑅−1𝐵𝑇𝑃                                                                            (10) 

The value of the positive definite matrix P is calculated by using the Riccati equation. 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                                                                         (11) 

 

Lineer Quadratic 

Regulator(LQR)
Mobile Robot

dq e


q

q

 

Figure 2. Controller structure of the system 



Modeling and Optimal Trajectory Tracking Control of Wheeled a Mobile Robot 

142 

 

3.2. Firefly Optimization Algorithm 

Various methods are applied to design and control the systems at optimal values. In this 

context, Firefly Optimization Algorithm, which is one of the metaheuristic optimization 

algorithm types and is actively researched in recent years, is an algorithm type developed by 

Yang (Yang ,2010; Yang, et al.,2013). This algorithm is used for the optimization of various 

problems (Olivares, et al.,2014; Patle, et al.,2017; Patle, et al.,2018; Lagunes, et al.,2019). 

The Firefly Algorithm inspired by the flashing patterns of fireflies in nature is based on the 

principle of moving to a random direction. According to the level of brightness, fireflies can 

affect the opposite sex or may scare the predators depending on the speed of flashing. They 

also use these biological flashing activities to attract their preys. Certain assumptions have 

been made in this optimization algorithm. 

1) All fireflies are accepted as unisexual, so they are attracted to each other 

independently. 

2) Attractiveness is determined by brightness; a less bright firefly moves toward a more 

bright one. 

3) The brightness (objective) function of a firefly is proportional to the fitness function 

that produces the brightest value. 

In this method, there are two important parameters. One of them is the change in the light 

intensity and the other is the attractiveness of the firefly. In a simple form, according to the 

inverse-square law, the change of the light intensity obtained at a distance of r from a light 

source is given in the equation 12. 

𝐼0(𝑥) =
𝛽

𝑟2                                                                                                                 (12) 

This equation is based on the initial light intensity (𝐼0), constant absorption coefficient 

of the light (γ) and distance (r). 𝛽0 indicates the attractiveness when the distance between a 

firefly and other adjacent firefly is x=0. 𝛽(𝑟) indicates the attractiveness amount of a firefly at 

a distance of x and it is expressed in the equation 13. 

𝛽(𝑟) = 𝐵0𝑒−𝛾𝑟2
                                                                                                      (13) 

When the distance (xi, xj) between any two fireflies on cartesian coordinates is taken 

respectively, the distance between fireflies can be calculated by using the equation 14. 

𝑟𝑖𝑗 =∥ 𝑥𝑖 − 𝑥𝑗 ∥= √∑ (𝑥𝑖 − 𝑥𝑗)2𝑑
𝑘=1                                                                        (14) 
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The distance between fireflies, for example, the distance between the ith firefly and jth 

firefly, can be determined by using the equation 15. Distance is important since it affects light 

intensity and attractiveness and determines the direction of fireflies. 

𝑥𝑖 = 𝑥𝑖 + 𝐵0𝑒−𝛾𝑟2
(𝑥𝑖 − 𝑥𝑗) + 𝛼𝜀𝑖                                                                          (15) 

The first term in the right of the equation 15 indicates the current position of the firefly, 

the second term establishes a relation between the light intensity seen by the adjacent fireflies 

and attractiveness of the current firefly and the last term represents a random movement to be 

made when there is not a more attractive firefly around the current firefly. 𝛼 indicates the 

coefficient taking a constant value in the range of random parameter [0,1] and 𝜀𝑖  shows a 

Gauss distribution vector drawn with random numbers in the range of [0,1]. 

 

4. SIMULATION RESULTS 

In this section, simulation studies were conducted by using the obtained model 

equations of WMR. In this section, the performance values of the control method were given 

graphically. The performance of the Linear Quadratic Regulator (LQR) control method was 

tested on different trajectories. The control variables of the system X and Y trajectories are 

the orientation angle values. Figures 3 and 4 show the responses of the WMRs to the method 

applied for the control of the sinusoidal and randomly created trajectories. The simulation run 

time was accepted as 15 seconds.  The convergence performance of the Firefly Optimization 

Algorithm is shown in the graph given in Figure 5. 

 

    
                                             a)                                                                    b)       
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                                            c)                                                                           d)     

Figure 3.  a- Trajectory, b- Orientation angle (𝜃), c- Angular velocity and d- Linear velocity 

control results 

 

 
                                          a)                                                                 b) 

       
                                           c)                                                                  d)                                   

Figure. 4.  a- Trajectory, b- Orientation angle (𝜃), c- Angular velocity and d- Linear velocity 

control results, 

    
Figure 5.  Performance analysis of the proposed algorithm 
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Figures 3-a, b, c, and d show trajectory, orientation angle, angular velocity, and linear 

velocity responses, respectively. Figures 4-a, b, c, and d show trajectory, orientation angle, 

angular velocity, and linear velocity responses, respectively. For the trajectory tracking 

control of WMR, both kinematic and dynamic models were considered. In the section of 

kinematic control, the position deviations in the target trajectory were eliminated and 

accordingly, the desired velocity was generated as output in the dynamic controller. The 

tracking error of LQR was observed to be low on both trajectories. System iteration number 

was taken as 50. However, it was observed that the algorithm proposed in the graph given in 

Figure 5 reached the best solution in the 21st iteration. Another important parameter is that 

the algorithm used in this study is fast. In the simulations, it was seen that the control 

performance showing fastness, smoothness and robustness was obtained in the LQR control 

method. 

 

5. DISCUSSION AND CONCLUSION 

In this study, the mathematical model of a wheeled mobile robot (WMR) was obtained 

and control studies were conducted in the simulation environment. For the control of WMR, 

the design and simulation of LQR control method were performed. Determining the matrices 

Q and R when designing an LQR control method is one of the main problems that decrease 

performance. By using the Firefly Optimization Algorithm, optimum matrices Q and R were 

obtained and applied successfully. The second-order low-pass filter design was made and 

applied to enable an effective control under the effect of process and measurement noises 

added to perform the control of WMR under the conditions close to real environment 

conditions. The results of the control method showed that the controller gave satisfactory 

results. In future studies, it is aimed to apply the proposed method on a real robot 
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